Stat 218 – Exam 2 Preparation

Basic information:
The exam will be given on Thursday, February 16 at the usual time in our usual classroom (02-206). The exam covers days 15-24 of class, investigations 7-10, portions of chapters 6 (section 6.6) through 10 (through section 10.3, also sections 10.7 and 10.9) of your text.

Some general advice:
- Prepare well-organized notes
- Arrive on time
- Don’t rely on text, notes too much
- Be cognizant of time constraint
- Read questions carefully
- Make use of partial information, calculations
- Relate conclusions to context
- Explain reasoning when asked

Outline (of most important topics since the first exam):
- Comparing independent samples
 - Confidence interval for \((\mu_1 - \mu_2)\):
 - Degrees of freedom
 - Importance of checking zero
 - Technical conditions
 - Hypothesis test
 - Null and alternative hypotheses
 - Non-directional vs. directional
 - Test statistic:
 \[t_s = \frac{\bar{y}_1 - \bar{y}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \]
 - Test statistic:
 - \(P\)-value
 - Calculation from table
 - Interpretation
 - Two-sided vs. one-sided
 - Significance level
 - Test decision
 - Technical conditions
 - Transformations
 - More inference considerations
 - Duality of tests and intervals
 - Significance vs. importance
 - Tests concern significance
 - Intervals address importance
- Non-sacredness of conventional α levels
- Types of errors
 - Consequences, trade-offs
- Designing statistical studies
 - Observational studies vs. controlled experiments
 - How to distinguish
 - Explanatory, response variables
 - Scope of conclusions
 - Lurking variables
 - Confounding
 - Causation
 - Designing experiments
 - Comparison
 - Control group
 - Placebo effect
 - Blindness
 - Randomization
- Paired data
 - Advantages of paired design
 - Paired t-procedures
 - Hypothesis test
 - Confidence interval
- Categorical data
 - Goodness-of-fit test
 - Expected counts
 - Test statistic
 - Chi-square distribution
 - P-value
 - Binary data
 - Goodness of fit test
 - Directional alternative
 - Confidence interval for population proportion p
 $$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
 - Conventional procedure:
 - Technical conditions
 - Sample size determination
 - Alternative procedure:
 $$\widetilde{p} \pm z^* \sqrt{\frac{\widetilde{p}(1-\widetilde{p})}{n+4}}$$
 - Chi-square tests for 2×2 tables
 - Testing equality of population proportions
 - Directional, nondirectional alternatives
 - Expected counts, test statistic, P-value
 - Analyzing 2×2 tables
 - Chi-square test
• Testing equality of population proportions
• Directional, nondirectional alternatives
• Expected counts, test statistic, P-value
 ▪ Difference in proportions
 ▪ Confidence interval
 ▪ Relative risk
 ▪ Odds ratio
 ▪ Confidence interval
 ▪ Importance of containing 1