Exam 3 Preparation

- Logistical details
 - Thur Nov 19
 - 50 minutes
 - Open-book, open-notes
 - Calculator needed

- Coverage
 - Handouts 15–20
 - Sections 5.5 – 5.6, 7.1 – 7.5, 8.1 – 8.3

- Resources available online
 - This preparation sheet
 - Handouts
 - Quizzes and solutions
 - Investigation assignments and solutions
 - Optional exercises

- Types of questions to expect
 - Short answer
 - Calculations
 - Interpretations and explanations
 - Similar to handout examples, quizzes, investigations, optional exercises, previous exams

- Advice for preparing
 - Prepare and organize your notes carefully
 - Don’t study less because it’s open-notes/book
 - Plan not to rely on your notes/book too much
 - Re-read, work through handouts
 - Re-read sections from text
 - Focus on understanding, not memorization
 - Review and make sure that you can answer quiz, investigation, optional exercise questions
 - Ask questions during class, office hours

- Advice during the exam
 - Show up on time!
 - Be cognizant of time constraint
 - Read carefully
 - Relate conclusions to context
 - Write and explain clearly
 - Show details of calculations
 - Do not elaborate excessively
Outline (of most important topics)

- Sampling distributions
 - Parameter, statistic
 - Sampling variability
 - Effect of sample size
 - Central Limit Theorem for sample proportion
 - Shape: approximately normal
 - Center: mean π
 - Variability: SD $\sqrt{\frac{\pi(1-\pi)}{n}}$
 - Technical conditions
 - Central Limit Theorem for sample mean
 - Shape: normal if pop’n normal, approx. normal for large n otherwise
 - Center: mean μ
 - Variability: SD σ/\sqrt{n}
 - Technical conditions

- Confidence intervals
 - Basic ideas
 - Form: point estimate \pm (critical value) \times (standard error)
 - Interpretations: of confidence interval, of confidence level
 - Effects of sample size, confidence level

- Hypothesis tests
 - Structure, reasoning, interpretation
 - Null hypothesis
 - Claim about parameter value
 - Alternative hypothesis
 - One-sided vs. two-sided
 - Test statistic: (statistic – hypothesized value) / standard error of statistic
 - Measure of how far sample statistic falls from hypothesized value of population parameter
 - p-value
 - Interpretation: probability of obtaining such an extreme sample if null hypothesis were true
 - Smaller p-values provide stronger evidence against null hypothesis
 - Significance level α
 - Test decision
 - Reject H_0 when p-value $\leq \alpha$
 - Fail to reject H_0 when p-value $> \alpha$
 - Technical conditions

- Inference for population proportion π
 - Confidence interval for population proportion π
 $$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
 - Technical conditions
 - Interpretation
- Sample size determination
 - Hypothesis test for population proportion π
 - Test statistic $z = \frac{\hat{p} - \pi_0}{\sqrt{\frac{\pi_0(1-\pi_0)}{n}}}$
 - p-value from z-distribution
 - Technical conditions
 - Conclusion

- Inference for population mean μ
 - Confidence interval for population mean μ
 - $\bar{x} \pm t^* \frac{s}{\sqrt{n}}$
 - Technical conditions
 - Interpretation
 - Not prediction interval
 - Hypothesis test for population mean μ
 - Test statistic $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$
 - p-value from t-distribution
 - Technical conditions
 - Conclusion

- Comparing two groups
 - Two-sample z-procedure for comparing proportions
 - Hypothesis test
 - Confidence interval, interpretation
 - Technical conditions
 - Two-sample t-procedure for comparing means
 - Hypothesis test
 - Confidence interval, interpretation
 - Technical conditions

- More inference considerations
 - Relationship between tests and intervals
 - Statistical significance vs. practical importance
 - Tests/p-values concern significance
 - Confidence intervals address importance
 - Importance of random sampling