Final Exam Preparation

Logistical details:
- Date/time
 - Wed Dec 8 from 1:10-4pm (Sec 1)
 - Fri Dec 10 from 1:10-4pm (Sec 2)
- Coverage: roughly one-half to two-thirds on newer material
 - Sections 10.1-10.10, 10.12, 11.5 of text
 - Handouts 20-24
 - Quizzes 20-24
- Extra office hours during finals week:
 - Mon Dec 6: 1:10-3pm
 - Wed Dec 8: 8:10-9am
 - Thur Dec 9: 3:10-4pm
- Open book, notes, handouts, quizzes, solutions
 - You may use anything that I have provided or that you have produced yourself
- Bring calculator, normal probability table, Fourier transform table

Advice for preparing:
- Organize your notes
 - Helpful to have well-organized notes during exam
 - Very effective way to study regardless
- Make use of online resources
 - Handouts, quiz solutions, problem solutions
 - Previous exam preparation, exam solutions
- Review key ideas, definitions, results from handouts
- Re-work questions from handouts, quizzes
 - Without looking at answers first
- Work on optional problems from text
 - Check answers in Blackboard
- Don’t study less because it’s open book/notes
 - Likely to refer to book, notes less than you expect

Advice during exam:
- Show method of solution
 - Use clear notation
 - State any assumptions
 - Indicate what rules you are using
 - Be on lookout for simplest way to solve problem
- Read carefully
 - Answer what is asked for
 - Make use of information provided
Outline of key ideas (since last exam):

- **Stochastic processes**
 - Classification
 - Discrete- vs. continuous-value
 - Discrete- vs. continuous-time
 - Probability distribution at given point in time
 - Functions related to stochastic process
 - Mean function
 - Autocovariance function
 - Autocorrelation function
 - Variance function

- **Stationary processes**
 - Intuitive idea
 - Wide-sense stationarity
 - Conditions to check
 - Properties of autocorrelation function with WSS process

- **Particular types of stochastic processes**
 - Bernoulli process
 - Poisson process
 - Definition
 - Probability calculations
 - Distribution of inter-arrival times (exponential)
 - Distribution of times until k arrivals (Erlang)
 - Gaussian process
 - Definition
 - Probability calculations
 - Distribution of sum, difference
 - Role of covariance
 - Brownian motion

- **Power spectral density functions**
 - Goal: see how power is distributed across frequencies
 - Relationship with autocorrelation function
 - Fourier transform
 - Properties
 - (Ensemble average) power
 - Calculated from autocorrelation function
 - Calculated from power spectral density function