A random variable is one whose value is determined by some chance mechanism. It can be thought of as a function that takes an outcome in a sample space as input and then gives a real number as output.

- With a discrete random variable, the set of possible values is either finite or countably infinite.
- With a continuous random variable, the probability is spread continuously over intervals of real numbers.

Random variables are often denoted with capital letters, toward the end of the alphabet.
- Lower case letters denote possible values of random variables.

Example 7-1: Matching Babies (cont.)
Recall the “random babies” process in which four babies are returned to their mothers at random. We represented the sample space of possible outcomes as:

```
1234 1243 1324 1342 1423 1432
2134 2143 2314 2341 2413 2431
3124 3142 3214 3241 3412 3421
4123 4132 4213 4231 4312 4321
```

Let the random variable $X = \text{number of mothers who get the correct baby}$.

a) For each of the 24 outcomes in the sample space above, determine the numerical value that the random variable X assigns to that outcome.

b) List all possible values of the random variable X. Then report the probability for each of those possible values.

c) Write out the pmf of the random variable X in this case.

The probability mass function (pmf) of a discrete random variable X is a function that assigns a probability to each possible value of X.

- The pmf of X is denoted by $p(x)$, where $p(x) = \text{Pr}(X = x)$.
 - $p(x) \geq 0$ for all x
 - $\sum_x p(x) = 1$

c) Write out the pmf of the random variable X in this case.
d) For the following values x, report $\Pr(X \leq x)$. [Note that this is not asking for $\Pr(X = x)$.]

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pr(X \leq x)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e) For the following real numbers x, report $\Pr(X \leq x)$.

<table>
<thead>
<tr>
<th>x</th>
<th>-1</th>
<th>1.5</th>
<th>π (3.14159 ...)</th>
<th>56.2897</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pr(X \leq x)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The cumulative distribution function (cdf) of a (discrete or continuous) random variable X is a function that takes any real number as input and outputs the probability that the random variable is less than or equal to the input value.
 - The cdf is typically denoted by a capital letter and is defined for all real numbers x by: $F(x) = \Pr(X \leq x)$.
 - The cdf is a non-decreasing function.
 - The cdf approaches 0 as the input approaches negative infinity.
 - The cdf approaches 1 as the input approaches positive infinity.

f) Write out the cdf for this random variable X.

g) Create a graph of this cdf. How would you describe such a graph/function?

- The cdf of a discrete random variable is a step function.
 - The steps occur at the possible values of the random variable.
 - The height of a particular step corresponds to the probability of that value.
Example 7-2: Rolling Dice (cont.)

a) Consider a random variable X with pmf given by:
\[
p(x) = \begin{cases}
5/12 & x = -1 \\
1/6 & x = 0 \\
5/12 & x = 1 \\
0 & \text{otherwise}
\end{cases}
\]

Determine and graph the cdf of X.

b) Consider a random variable Y with cdf given by:
\[
F(y) = \begin{cases}
0 & y < 0 \\
1/6 & 0 \leq y < 1 \\
4/9 & 1 \leq y < 2 \\
2/3 & 2 \leq y < 3 \\
5/6 & 3 \leq y < 4 \\
17/18 & 4 \leq y < 5 \\
1 & y \geq 5
\end{cases}
\]

Determine and graph the pmf of Y.
Example 7-3: Solitaire
Suppose that every night I play Solitaire on my computer until I win for the first time. Let’s suppose that my probability of winning any one game is 1/9 and that the results of the games are independent. Let the random variable $Z =$ number of games that I play in order to achieve my first win.

a) What are the possible values of Z?

b) Determine and graph the pmf of Z.

c) Verify that the pdf sums to 1. Also indicate the calculus tool needed to do this.

d) Determine and graph the cdf of Z.

Example 7-4: World Series
Suppose that two evenly matched teams play a sequence of games until one of them has won four games. Assume that each team has a .5 probability of winning each game, independently from game to game. Let the random variable G represent the number of games that are played. Determine the pmf of G.