Stat 427 Homework Assignment 1 (due Wednesday, April 9)
Topics: Testing Simple Hypotheses, Neyman-Pearson Lemma

1. Reconsider the class example in which X has a Beta(θ, 1) distribution. Now consider testing the simple hypotheses \(H_0: \theta = 1 \) vs. \(H_1: \theta = k \), where \(k > 1 \).
a) Let \(k = 4 \). Determine the test procedure that minimizes the sum of the probabilities of type I and type II errors.
b) Determine the probability of type I error and the probability of type II error with this procedure in a), still using \(k = 4 \).
c) Determine the test procedure that minimizes the sum of the probabilities of type I and type II errors for a general value of \(k \), where \(k > 1 \).

2. Reconsider the class example in which \(X_1, X_2, \ldots, X_n \) are a random sample of size \(n \) from an exponential distribution with parameter \(\theta \) (and therefore mean \(1/\theta \)). Consider testing the hypotheses \(H_0: \theta = 1 \) vs. \(H_1: \theta = 2 \). Let \(a \) and \(b \) be positive constants.
a) Determine the test procedure that minimizes \(a \times \alpha + b \times \beta \).
b) Now consider testing \(H_0: \theta = \theta_1 \) vs. \(H_1: \theta = \theta_2 \), where \(\theta_1 \) and \(\theta_2 \) are positive constants with \(\theta_2 > \theta_1 \). Determine the test procedure that minimizes \(a \times \alpha + b \times \beta \) for these hypotheses.

3. Suppose that a single observation \(X \) is to be drawn from an unknown distribution and that the following simple hypotheses are to be tested:

\[
H_0: \text{X has a uniform distribution on the interval (-2.5, 2.5)}
\]
\[
H_1: \text{X has a standard normal distribution}
\]

a) Determine the test procedure that minimizes the sum of the probabilities of type I and type II errors. Be sure to specify what the test procedure stipulates for all real values of \(x \). [\text{Hint: You might obtain some intuition for this situation by graphing the two pdfs on the same scale, perhaps with Minitab’s Graph> Probability Distribution Plot> Two Distributions command.}]
b) Calculate the probability of type I error and the probability of type II error with this procedure.

4. Reconsider the class example in which \(X_1, X_2, \ldots, X_n \) are a random sample of size \(n \) from a normal distribution with mean \(\theta \) and standard deviation 1. Let \(c \) be a positive constant, and consider testing the hypotheses \(H_0: \theta = 0 \) vs. \(H_1: \theta = c \).
a) Use the Neyman-Pearson Lemma to determine the optimal test procedure with a significance level of .05.
b) Derive an expression for the probability of type II error for this test procedure.
c) Describe the effect of increasing the value of \(c \) on the rejection region and on the probability of type II error for this test procedure.

5. D&S, page 469, #4

6. D&S, page 470, #8, 9

7. D&S, page 470, #10

8. D&S, page 470, #11